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Abstract 

Chromatin accessibility is essential for transcriptional activation of genomic regions. It is well established that tran-
scription factors (TFs) and histone modifications (HMs) play critical roles in chromatin accessibility regulation. How-
ever, there is a lack of studies that quantify these relationships. Here we constructed a two-layer model to predict 
chromatin accessibility by integrating DNA sequence, TF binding, and HM signals. By applying the model to two 
human cell lines (GM12878 and HepG2), we found that DNA sequences had limited power for accessibility predic-
tion, while both TF binding and HM signals predicted chromatin accessibility with high accuracy. According to the 
HM model, HM features determined chromatin accessibility in a cell line shared manner, with the prediction power 
attributing to five core HM types. Results from the TF model indicated that chromatin accessibility was determined 
by a subset of informative TFs including both cell line-specific and generic TFs. The combined model of both TF and 
HM signals did not further improve the prediction accuracy, indicating that they provide redundant information in 
terms of chromatin accessibility prediction. The TFs and HM models can also distinguish the chromatin accessibility of 
proximal versus distal transcription start sites with high accuracy.
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Introduction
Chromatin accessibility is the extent to which nuclear 
molecules, including TFs, chromatin remodelers and 
histones, could physically interact with chromatinized 
DNA [1]. During the development, timely opening of 
specific genomic regions is essential for transcription 
activation and maintaining the regular differentiation 
state in cells [2, 3]. The chromatin remodeling either hap-
pens at the promoter locus to directly initiate the gene 
expression, or in the regulatory regions such as enhancer 
and silencer to impact the gene expression [4, 5]. To 
measure the opening genomic regions in cells, many 

sequencing-based techniques have been developed, with 
ATAC-seq now being the most widely used technique 
[6, 7]. Histone modifications (HMs) and transcription 
factors (TFs) are important determinants in chroma-
tin accessibility [1, 8–10]. HMs regulate the chromatin 
accessibility by modulating the nucleosome affinity for 
active chromatin remodelers or changing the local chro-
matin structure [1, 11]. The combination of HMs, known 
as histone code, could dramatically change the state of 
the chromatin, allowing for the bindings of TFs or other 
active chromatin remodelers [12]. On the other hand, 
TFs dynamically compete with histones or interact with 
other chromatin binding proteins to promote the access 
to DNA [1]. According to the Encyclopedia of DNA ele-
ments (ENCODE), TFs play important roles in regulating 
chromatin accessibility as more than 90% of the accessi-
ble genome were bound by TFs [13]. In addition to TFs 
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and HMs, other factors, such as the sequence composi-
tion or the enrichment of TF binding motifs, were also 
found to be associated with chromatin accessibility [14]. 
Though all associated with chromatin accessibility, there 
is a lack of quantitative, systematic studies that evaluate 
the different contributions of each factor during chroma-
tin remodeling.

Many methods have been developed to predict the 
chromatin accessibility using genomic and epigenomic 
features. However, most of them only used DNA 
sequence information as the feature for prediction, leav-
ing the contribution of other genomic and epigenomic 
features being un-answered [15–18]. For the limited stud-
ies that integrated DNA sequence with TFs for prediction 
[14], the different contributions between these factors in 
chromatin accessibility prediction was not examined. In 
addition, though over 20 HMs have been identified to be 
associated with chromatin accessibility [11, 19], which 
HM functions as the most important regulator remains 
unknown. It’s also unclear if HMs perform similarly with 
TFs or DNA sequence in regulating chromatin accessibil-
ity and if HMs and TFs have similar patterns in regulating 
chromatin accessibility among different cell lines. There-
fore, a quantitative chromatin accessibility prediction 
model that integrates different epigenomic and genomic 
features is needed.

In order to build an integrative chromatin accessibility 
prediction model, we used the ChIP-seq data of 11 HMs 
and over 100 TFs from GM12878 and HepG2 cell lines. 
These datasets included TF binding profiles, HM patterns 
across the whole genome, DNA sequence information 
and 687 TF binding motif counts in accessible and non-
accessible regions. The prediction performance of those 
4 features was systematically studied and we found the 
HMs and TFs were the major regulators. Further apply-
ing the model revealed that different cell lines shared 
similar HMs that account for chromatin accessibility, yet 
only a few common TFs were identified between different 
cell lines that could predict the chromatin accessibility. In 
summary, we developed a computational framework for 
modeling the association between chromatin accessibil-
ity and different epigenomic and genomic features. This 
framework and the models introduced in this work could 
be applied to different datasets or species to study the 
regulation of chromatin accessibility.

Results
The integrative model for predicting chromatin 
accessibility
Our hypothesis was that the sequence, TF motifs, TF 
binding, and HMs were associated with chromatin acces-
sibility. We validated the hypothesis by examining the 
signal difference between accessible and non-accessible 

regions. In both GM12878 and HepG2 cell lines, most 
of the TFs and HMs presented distinctive patterns 
between accessible and non-accessible regions. The bind-
ing signals for most TFs were enriched in the accessible 
regions while HM signals were enriched in either acces-
sible or non-accessible regions (Fig.  1A-B). In addi-
tion, the enrichment score of TFs motifs validated that 
TF signals were associated with accessible chromatin 
regions. Compared to the background, most TFs motifs 
had enrichment score higher than 1, indicating the asso-
ciation between TF motifs and chromatin accessibility 
(Fig. 1A-B).

We then developed a two-layer integrative model to 
integrate different types of features for predicting chro-
matin accessibility (Fig.  1C). The chromatin accessibil-
ity measured by ATAC-seq was used as the training 
reference, and the peak region was further binned using 
100 bp as the window size so that each of the open region 
had the same length. In the first layer, we used the DNA 
sequence in the accessible and non-accessible region to 
train a Convolutional Neural Network (CNN) model. 
Taking advantage of the CNN model, we converted any 
given DNA region into the probability of accessibility 
for sequence feature extraction. In the second layer, we 
integrated the derived probability of accessibility from 
the CNN model (first layer) with TF motif counts, HM, 
and TF binding signals for chromatin accessibility predic-
tion. Specifically, TF motif counts were calculated based 
on the occurrences of TF motifs in the accessible and 
non-accessible region. HM and TF binding signals were 
derived from the bigwig files, which contained the signal 
coverage information for the whole genome. A Random 
Forest model was used to integrate those four categories 
of features. Meanwhile, we also built chromatin acces-
sibility prediction solely based on TF binding features 
(TF model), HM features (HM model) or motif features 
(Motif Model). These models enabled us to quantify the 
power of each feature category in predicting chromatin 
accessibility.

HMs and TFs served as major determinants the chromatin 
accessibility
We first quantified the AUC of each category of fea-
tures in predicting chromatin accessibility using Ran-
dom Forest models that incorporate just one specific set 
of features (TF, HM, TF motif, or DNA seq) (Fig. 2A-B). 
In GM12878 cell line, the highest AUC was obtained 
through the TF model (AUC = 0.84, Fig.  2A), followed 
by the AUC of the HM model (AUC = 0.78, Fig. 2A). The 
similar pattern was observed in HepG2 cell line, where 
TF model and HM model achieved an AUC of 0.84 
and 0.79 respectively (Fig.  2B). This indicated that HM 
and TF had comparable power in predicting chromatin 
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accessibility. On the contrary, a much weaker prediction 
power was observed for models based on sequence or 
motif features.

Then we examined the prediction performance of 
using different combinations of features. Our result 
indicated that the sequence and motif features did 
not further improve the prediction accuracy of the TF 

model and the HM model (Fig.  2C-D). In addition, 
when TF and HM features were combined, the result-
ing models achieved similar accuracy with the TF model 
(AUC = 0.84) and the HM model (AUC = 0.78), with the 
Seq + Motif+TF + HM model having an AUC of 0.86 
in GM12878 (Fig.  2C). Similar results were observed in 
HepG2 (Fig.  2D). There results suggested that TF and 

Fig. 1  Integrative model configuration. A and B. Heatmap showing the signal difference of TFs and HMs in accessible and non-accessible regions 
and the enrichment of TF motifs in 895,695 accessible regions in GM12878 (A) and 883,018 accessible regions in HepG2 (B). The signal was 
calculated by taking the average of all TFs/HMs binding signals. C. The chromatin accessibility of GM12878 and HepG2 data were acquired from 
ENCODE database. The DNA-sequence in the accessible region was extracted and embedded into the CNN model to convert the DNA sequence 
information to the probability of accessibility (Layer 1 model). The resulting probability was next integrated with ChIP-seq signal of HMs and TFs and 
the TFs motif occurrence in the accessible regions to train a Random Forest model
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HM features possessed redundant information in terms 
of chromatin accessibility prediction.

Core histone‑related features associated with chromatin 
accessibility
HM functioned as a major individual determinant of 
the chromatin accessibility, so it is of interest to deter-
mine the contribution of each of the HM and to identify 
the important HMs for chromatin accessibility. Taking 
advantage of the Random Forest model, we derived the 
relative importance of each HM in the GM12878 and 
HepG2 cell lines respectively. Overall, the function of the 
HMs is very homogeneous in both cell lines. For exam-
ple, H2AZ.1, a variant of histone H2A [20, 21], was found 
to be the most important HM in GM12878 cell line and 
the 4th important HM in HepG2 cell line (Fig.  3A-B). 

In contrast to H2AZ.1, the importance of H3K27me3 
was consistently low in both cell lines. It ranked the 
second least important HM in GM12878 cell line and 
the least important HM in HepG2 cell line (Fig.  3A-B). 
More importantly, 5 histone-related features were found 
to have high relative importance in both two cell lines 
(Fig. 3A-B), suggesting that a core group of HMs was piv-
otal to the chromatin accessibility. To illustrate the essen-
tial role of those 5 histone-related features, we utilized 
a breakdown strategy to calculate the AUC after taking 
out the most important HMs. The prediction accuracy 
of the model kept consistently high in both cell lines 
(AUC > 0.7) when at least one of the 5 core group of HMs 
were still included in the model (Fig.  3C-D). However, 
after removing all H2AFZ, H3K4me2, H3K27ac, H3K9ac 
and H3K4me3 from the model, the prediction power of 

Fig. 2  Histone and TF determines the chromosome accessibility. A and B. ROC curves of using DNA sequence, TF motif occurrence, HMs signal 
and TFs binding signal as features for chromatin accessibility prediction in GM12878 (A) and HepG2 (B) cell lines. C and D. Barplots showing the 
AUC of using combined DNA sequence + Motif, DNA sequence + HM, DNA sequence + TF and DNA sequence + Motif + HM + TF as features for 
chromatin accessibility prediction in GM12878 (C) and HepG2 (D) cell lines. All AUCs were calculated by taking the average AUC of 10-folds cross 
validation
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the model was heavily weakened (AUC = 0.63, GM12878; 
AUC = 0.67 HepG2, Fig. 3C-D).

Different HMs could have very similar function across 
different cell lines [11, 22]. For example, H3K4me3 is 
consistently associated with transcription start site 
(TSS) while H3K27ac is associated with enhancers [11]. 
We hypothesized that HMs also had conserved func-
tions in regulating chromatin accessibility between dif-
ferent cell lines. To test this hypothesis, we first trained 
the HM model in the HepG2 cell line and achieved an 
AUC = 0.79 by 10-fold cross validation. Then we applied 
this validated HepG2 model to predict the chromatin 
accessibility in the GM12878 cell line using the HM sig-
nals of GM12878. Shown in Fig. 3E, the HepG2 model in 
the GM12878 cell line achieved similar prediction per-
formance with GM12878 self-prediction performance 
and outperformed the random constructed model. Sim-
ilar results can be shown with the same procedure of 
training the model in the GM12878 cell line dataset and 
testing on the HepG2 cell line dataset (Fig. 3F).

Strong association of H2AZ.1 with chromatin accessibility
In both the HepG2 and GM12878 cell lines, we found 
H2AZ.1 ranked at the top of the five core histone-related 
features regulating chromatin accessibility (Fig.  3A-D). 
H2AZ.1 is a variant of histone H2A and has found to be 
associated with active promoters and enhancers [20, 21]. 
Its function in regulating the global chromatin accessibil-
ity has not been well studied. We quantified the different 
H2AZ.1 signals in accessible chromatin regions (ACR) 
verses non-accessible chromatin regions (Non-ACR, 
Fig. 4A-B). The chromatin accessible regions had signifi-
cantly higher H2AZ.1 signal compared to the inaccessi-
ble regions (P = 2.7e-159, GM12878; P = 2.1e-99, HepG2, 
Fig. 4A-B). And this significant higher pattern was con-
sistent after further separating the accessible regions into 
proximal and distal regions (Suppl Fig. 2). Using H2AZ.1 
signal as the predictor could stratify the accessible and 
inaccessible chromatin regions with high accuracy in 
both cell lines (AUC = 0.74, GM12878; AUC = 0.69, 
HepG2, Fig.  4C). These results revealed that H2AZ.1 
impacted the chromatin accessibility in a global man-
ner and was not limited to specific regulatory elements 
region. We further examined the potential synergized 

HMs with H2AZ.1 by examining the colocalization of 
H2AZ.1 signals with other HMs. The signals of H2AZ.1 
colocalized with the rest of the core HMs in both cell 
lines with relative high correlation (Fig.  4D), indicating 
the synergistic effect among those 5 core HMs. In addi-
tion to those 5 core HMs, there was no strong negative 
association with other HMs’ signals (Fig. 4D).

Cell line specific and non‑specific TFs predicts chromatin 
accessibility
Compared with the HM model, the TF model had 
even better power in predicting chromatin accessibil-
ity (Fig. 2C-D). Unlike HMs, the roles of TFs are largely 
heterogeneous. Common TF could be shared among 
different cell types and directly bind to condensed 
chromatin to establish accessibility, while other TFs 
are recruited to the opened chromatin regions and act 
in a cell line specific manner. To investigate the roles 
of different TFs in opening chromatin, we ranked the 
relative importance of each TF in the GM12878 and 
HepG2 models. TRIM22, a T cell activation associ-
ated transcription factor [23], had the highest rela-
tive importance in the GM12878 cell line but not in 
HepG2, revealing its cell line specific role in regulat-
ing the chromatin accessibility (Fig.  5A). In addition 
to the cell line specific TF, we also identified YY1, a 
structure regulator of enhancer-promoter interactions 
[24–27], whose relative importance was high in both 
GM12878 and HepG2 cell lines (Fig.  5A). We further 
performed the similar breakdown analysis and sought 
to find a group of core TFs. Unlike the pattern of HMs 
breakdown analysis, the prediction accuracy dropped 
very smoothly. The model collapsed and presented a 
notable drop after removing most of the TFs in both 
cell lines (Fig. 5B). In addition, the TFs that caused the 
drop of the prediction were different in both cell lines, 
though some shared TFs were identified. For example, 
in GM12878 cell line, TRIM was removed in the very 
beginning in the model while it was removed at the 
very end in the HepG2 cell line. In contrast, YY1 was 
removed at the early stage in the breakdown analysis 
in both cell lines (Fig.  5B). These results revealed that 
both shared TFs and cell line specific TFs participate in 
regulating the chromatin accessibility.

(See figure on next page.)
Fig. 3  Histone models identify five core histones-related features with strong effects on chromosome accessibility. A and B. Boxplots indicating the 
relative importance of each histone-related features in chromatin accessibility prediction in GM12878 (A) and HepG2 (B) cell lines. C and D. Barplots 
showing the AUC change of taking out each HM for chromatin accessibility prediction in GM12878 (C) and HepG2 (D) cell lines. E. AUCs in (C) and 
(D) were calculated by taking the average AUC of 10-folds cross validation. Barplots showing the AUC of HepG2 model in GM12878 HM signals 
and GM12878 model in GM12878 HM signals for GM12878 chromatin accessibility prediction. F. Barplots showing the AUC of GM12878 model in 
HepG2 HM signals and HepG2 model in HepG2 HM signals for HepG2 chromatin accessibility prediction. AUCs of GM12878 model in GM12878 HM 
signals and HepG2 model in HepG2 HM signals were calculated by taking the average AUC of 10-folds cross validation. AUCs of GM12878 model in 
HepG2 HM signals and HepG2 model in GM12878 HM signals were calculated by applying the model to a different test dataset
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Fig. 3  (See legend on previous page.)
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In order to identify the cell line-specific and cell line 
shared TFs, we plotted the importance of different TFs 
in the GM12878 and HepG2 cell lines on a scatterplot 
(Fig.  5C). A weak correlation was observed between 
these two cell lines, supporting the hypothesis that 

TFs are largely heterogenous in regulating chromatin 
accessibility in different cell lines (Fig.  5C). However, 
there was a group of TFs (YY1, CREM, ARID3A and 
BHLHE40) that had high relative importance in both 
cell lines and therefore were defined as the common 

Fig. 4  H2AZ.1 serves as major histone modifications in chromatin accessibility regulation. A and B. Boxplots indicating the H2AZ.1 signal difference 
in ACRs and non-ACRs. P value was calculated by Wilcoxon rank sum test. ACRs and non-ACRs were 2000 randomly chosen bins from the total 
ACRs and non-ACRs. C. ROC curves of using H2AZ.1 as feature for chromatin accessibility prediction in GM12878 and HepG2 cell lines. AUCs were 
calculated by taking the taking the average AUC of 10-folds cross validation. D. Heatmap showing the correlation between H2AZ.1 signals and 
other HM signals. The correlation coefficient was calculated by Spearman Correlation

(See figure on next page.)
Fig. 5  TF models identify cell line specific and shared specific TFs with strong effects on chromosome accessibility. A. Boxplots indicating the 
relative importance of each TFs binding signals in chromatin accessibility prediction in GM12878 (up panel) and HepG2 (bottom) cell lines. B. 
Barplots showing the AUC change of taking out each TF binding signal for chromatin accessibility prediction in GM12878 (up panel) and HepG2 
(bottom) cell lines. C. Scatterplot showing the consistency of TFs relative importance between GM12878 and HepG2 cell lines. The circles indicated 
GM12878 specific TFs, HepG2 specific TFs and common TFs. D. Barplots showing the AUC of GM12878 specific TF model with GM12878 TFs binding 
signals for GM12878 chromatin accessibility prediction and GM12878 specific TF model with HepG2 TFs binding signals for HepG2 chromatin 
accessibility prediction (left panel). Barplots showing the AUC of HepG2 specific TF model with HepG2 TFs binding signals for HepG2 chromatin 
accessibility prediction and HepG2 specific TF model with GM12878 TFs binding signals for GM12878 chromatin accessibility prediction (right 
panel). E. Barplots showing the AUC of GM12878 common TF model with HepG2 TFs binding signals for HepG2 chromatin accessibility prediction 
and GM12878 specific TF model with HepG2 TFs binding signals for HepG2 chromatin accessibility prediction (left panel). Barplots showing the AUC 
of HepG2 common TF model with GM21878 TFs binding signals for GM12878 chromatin accessibility prediction and GM12878 common TF model 
with GM12878 TFs binding signals for GM12878 chromatin accessibility prediction (right panel). AUCs of GM12878 model in GM12878 TF signals 
and HepG2 model in HepG2 TF signals were calculated by taking the average AUC of 10-folds cross validation. AUCs of GM12878 model in HepG2 
TF signals and HepG2 model in GM12878 TF signals were calculated by applying the model to a different test dataset
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Fig. 5  (See legend on previous page.)
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TFs (Fig. 5C). Additionally, we revealed two groups of 
TFs with high relative importance but limited to their 
own cell origins. For example, the TRIM22’s high rela-
tive importance was only observed in GM12878 cell 
line. Driven by this, we defined 3 GM12878 specific 
TFs, 3 HepG2 specific TFs and 4 cell line shared TFs 
to train the GM12878 specific, HepG2 specific and 
shared TF models. The predictive power of those TFs 
was validated through examining if those models could 
be transferred across the two cell lines. For GM12878 
specific TF model, the prediction accuracy dropped 
from 0.82 to 0.5 when applying the model to HepG2 
data (Fig. 5D). Similar finding could be observed when 
applying HepG2 specific TF model to the GM12878 
data (Fig. 5D). In contrast, the shared TF models could 
be transferred between HepG2 and GM12878 cell lines 
(Fig.  5E). Either GM12878 or HepG2 common TF 
models could achieve comparable prediction accuracy 
in those two cell lines (Fig. 5E).

HM and TF features are redundant for predicting 
chromatin accessibility
Epigenetic studies suggested that HMs play a central 
role in transcriptional regulation and revealed substan-
tial overlaps between TFs binding and HMs [28]. In 
our analysis, both the histone model and the TF model 
achieved good performance in predicting chromatin 
accessibility (Figs. 2, 3 annd 4), leaving an open question 
whether HMs and TFs binding provide complementary 
or redundant information to each other in regulating 
the chromatin accessibility. We first examined the level 
of colocalization between HMs and TF binding signals 
through spearman correlation. On the genome of both 
the GM12878 and HepG2 cell lines, the average HM 
signals were highly correlated with the average TF bind-
ing signals (Rho = 0.62, GM12878; Rho = 0.71, HepG2, 
Fig.  6A-B). Therefore, we hypothesized that HM signals 
and TF binding signals provided redundant informa-
tion in predicting chromatin accessibility. HMs only, 

Fig. 6  Redundancy between HM and TF features in determining chromosome accessibility. A and B. Scatterplot showing the correlation between 
histone modifications signals and TFs binding signals in GM12878 (A) and HepG2 (B) cell lines. The correlation coefficient was calculated by 
Spearman correlation. C and D. Barplots showing the AUC of combined HM with TF model in GM12878 (C) and HepG2 (D) cell lines. AUCs were 
calculated by taking the taking the average AUC of 10-folds cross validation
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TF binding only and TF-HM combined models were 
built and compared. In GM12878 cell line, the HMs 
only model achieved an AUC = 0.78 and the TFs only 
model achieved an AUC = 0.84. The AUC didn’t increase 
remarkably when integrating HMs with TFs (AUC = 0.86, 
Fig.  6C). The same finding was observed in HepG2 cell 
line (AUC = 0.79, HMs; AUC = 0.84, TFs; AUC = 0.85, 
HMs + TFs, Fig. 6D). In conclusion, TFs colocalized with 
HMs when regulating chromatin accessibility and pro-
vided redundant information to each other in chromatin 
accessibility prediction (Fig. 6).

Accessible TSS proximal and distal regions presented 
distinctive epigenomic signals
We have validated the efficacy of our integrative model 
in predicting the chromatin accessibility. The position 
of open chromatin varies, which could be further sepa-
rated into TSS proximal and distal regions where both 
TFs and HMs were expected to present distinctive sig-
nals. Principal component analysis (PCA) showed a 
separation of TFs and HMs signals in the TSS proximal 

and distal region (Fig.  7A-B). This clear separation 
pattern introduced a chance of using our current 
model to predict the accessibility of a specific region. 
We thus applied our GM12878 TF and HM model 
defined in the beginning to predict the TSS proximal 
and distal regions’ accessibility. The TF model had 
AUC = 0.97 in predicting both the TSS proximal and 
distal regions’ accessibility (Suppl. Fig. 3A-B). Compa-
rable performance was observed using the HM model 
(AUC = 0.92, proximal, AUC = 0.85, distal, Suppl. 
Fig. 3A-B). Similar results were observed In the HepG2 
cell line (Suppl. Fig. 3C-D).

We further designed a detailed model for distin-
guishing the accessible TSS proximal regions with 
distal regions using HMs and TF binding signals. 
Both the TF and HM models obtained decent predict-
ing power in both the GM12878 and HepG2 cell lines 
(AUC = 0.88, TF model in GM12878, AUC = 0.89, 
histone model in GM12878, AUC = 0.89, TF model 
in HepG2, AUC = 0.90, histone model in HepG2, 
Fig. 7C-D).

Fig. 7  Accessible of TSS proximal and distal regions present distinctive epigenomic signals. A and B. PCA plot showing the separation of accessible 
TSS proximal region versus accessible distal region using TFs binding signals (A) and HMs (B). Red and Blue dots indicated proximal regions. Grey 
dots indicated distal regions. C and D. Barplots showing the AUCs of using TFs binding signals and histone modifications signals for accessible 
proximal region versus distal region prediction in GM12878 (C) and HepG2 (D). AUCs were calculated by taking the taking the average AUC of 
10-folds cross validation
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Discussion
In this work, we here pioneered a two-layer quantita-
tive integrative model for the prediction of chromatin 
accessibility. Two recent studies either used sequence 
feature or integrated sequence with TF expression or 
only integrated HMs with TFs signals for chromatin 
accessibility prediction [11, 14, 29]. Compared with 
the previous studies, our analysis had such advantages 
in the following aspects. First, we provided a general-
ized computational framework for epigenomic data 
integration. Through the development of the model, we 
integrated sequence features, which include sequence 
and TF motifs, with the epigenomic features, which 
include ChIP-seq profiles of HMs and TFs, for chroma-
tin accessibility prediction. Second, we systematically 
evaluate the contribution of different groups of features 
in predicting chromatin accessibility and identify HMs 
and TFs severed as the major determinants. Third, we 
generated feature specific prediction model to explore 
the mechanism that HMs and TFs played in regulating 
chromatin accessibility.

Using sequence information for chromatin accessibility 
prediction or histone modification prediction has been 
well reported. In contrast to those previous results, our 
model presented a poor performance of using sequence 
information as the predictor (Fig.  1). The differences in 
prediction performance could be explained by the choice 
of positive and negative regions during model training. 
Most studies chose the random regions in the genome as 
the negative regions for prediction. In that case, instead 
of predicting chromatin accessible versus inaccessible 
regions or modified versus non-modified regions, the 
model was predicting chromatin accessible or modified 
regions versus random background. Our study selected 
the nearby regions of the accessible regions as the nega-
tive regions to minimize the sequence level variation and 
therefore provided an objective comparison.

As early in 1960, Allfrey et al. identified the acetylation 
of histones, leading to the hypothesis that acetylation is 
associated with transcription activity [30]. In the past 
decades, tremendous efforts have been made to illustrate 
the cellular functions of HMs [11]. Though the associa-
tion between individual HM and TF with open chromatin 
has been studied for decades [11], the relative importance 
of each HM and TF in regulating chromatin accessibility 
was not addressed in a global manner. In our analysis, we 
first identified TFs and HMs served as the major determi-
nants of chromatin accessibility (Fig. 2). Additionally, TFs 
and HMs cooperated together to regulate the chromatin 
accessibility (Fig. 6). It was well known that TFs interacts 
with HMs for regulating gene expression [31, 32]. Our 
analysis indicated this interaction happened beyond the 
TSS range by observing the high correlation structure in 

the genome wide level (Fig.  6). And it is not surprising 
to observe the prediction redundancy between HMs and 
TFs (Fig. 6). The mechanisms behind TFs and HMs reg-
ulation are complicated and multiple models have been 
proposed. For example, the TFs could interact with chro-
matin remodeler directly to create an accessible region 
whereas HMs are simply the subsequent readout. How-
ever, the power of our analysis was limited by the number 
of ChIP seq files provided in the ENCODE dataset. With 
more ChIP seq files released in the future, we could fur-
ther investigate the relationship between TFs, chromatin 
remodeler and HMs in regulating chromatin accessibility.

We identified 4 important HMs and 1 histone vari-
ants which were all reported to be associated with active 
gene transcription or enhancers [1] (Fig. 3). Interestingly, 
the histone H2A variant H2AZ.1, which was found to 
be enriched in active promoters and enhancers [20, 21], 
was similar or more important in regulating chromatin 
accessibility compared to other well-known HMs (Fig. 4). 
This supports the theory that histone variants, though 
very similar in their major canonical histone counter-
parts, could have strong functional impacts [21, 33]. With 
more ChIP-seq files of histone variants being available, 
we could systematically compare the importance of his-
tone variants with HMs in chromatin accessibility regula-
tion. Interestingly, the importance of these 5 core HMs 
in regulating chromatin accessibility is shared between 
GM12878 and HepG2 cell lines. The prediction model 
that trained either in GM12878 or HepG2 cell line could 
be easily transferred across both cell lines, supporting the 
existence of a common histone code for chromatin acces-
sibility [12] or at least those two cell lines shared the sim-
ilar histone code.

Unlike the core HMs, different TFs regulate chroma-
tin accessibility in different manners among cell lines. In 
our analysis, there was not a group of core TFs that were 
important for chromatin accessibility in both cell lines. 
We therefore developed a computational framework 
to identify common TFs and cell line specific TFs. Cell 
line specific TFs including IKZF1, TRIM22 and ATF2 
only predict the chromatin accessibility in GM12878 cell 
line, though the ChIP-seq profiles of these cell line spe-
cific TFs were also measured in the other cell line. One 
of the reasons that make those TF important is they have 
a global gain of binding signals in the accessible regions 
compared with other TFs. We, therefore, examined the 
correlation between peak number and the relative impor-
tance of those TFs. A general positive correlation was 
observed in both GM12878 and HepG2 cell lines (Suppl. 
Fig. 5A-B).

GM12878 is a lymphoblastoid cell line from B lympho-
cyte. IKZF1 is an important regulator in B-cell precur-
sor acute lymphoblastic leukemia [34]. ATF2’s function 
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in regulating B cell lymphoma progression has been well 
illustrated in previous studies [35, 36]. Unlike IKZF1 and 
ATF2, TRIM22’s function was not well characterized 
in B cell associated cancer. TRIM22 is IFN-stimulated 
gene (ISG) upregulated upon IFN administration and its 
expression in B cell lymphoma has been reported [37]. 
Given its strong association with chromatin accessibility 
in GM12878 cell lines, further efforts are needed to illus-
trate its regulatory mechanism. HepG2 cell line is a liver 
cancer cell line where CEPB, REST and USF1 strongly 
contribute to chromatin accessibility. In specific, CEBB 
expression served as a prognostic marker in liver cancer 
and contribute to the progression of liver cancer. Though 
CEPB is identified as a tumor suppressor, its function has 
been controversially reported in liver cancer, yet more 
detailed investigation is needed [38, 39]. USF1 expres-
sion was found to be significantly higher in liver cancer 
tissue compared with normal liver cancer tissue [40]. As 
a member of c-Myc related family, USF1 could regulate 
numerous gene expression, which leads to liver cancer 
progression [41–43]. REST gene was marginally stud-
ied in liver cancer. There is only a handful of studies dis-
cussing its expression and alternative splicing status in 
cancer [44, 45]. Our results indicated its importance in 
maintaining chromatin accessibility. Soon, when the new 
ChIP-seq and ATAC-seq become available, we hope to 
further examine REST’s role in liver cancer progression.

Shared TFs between different cell lines also existed as 
the prediction model could be transferred due to their 
similar power in predicting chromatin accessibility 
across different cell lines (Fig. 5). Among those TFs, YY1 
has been reported as the global regulator for promoter-
enhancer interactions [24–27]. To our knowledge, the 
function of BHLHE40, ARID3A and CREM has not be 
well illustrated in terms of serving as common TF across 
different cell lines. To further examine their function, in 
the future, we could examine other cell lines which con-
tained the ChIP-seq profiles of those 3 TFs for chromatin 
accessibility prediction.

Though ATAC-seq is the current golden standard for 
directly measuring chromatin accessibility, there were 
numerous chromatin accessibility data that were gener-
ated from other sequencing techniques [46–48]. Our 
model was not only able to predict chromatin accessi-
bility measured by ATAC-seq, but also effectively pre-
dicted the accessibility that was measured by DNase- and 
FAIRE-seq data (Suppl. Fig. 4). With more data available, 
for example, the MNase-seq data [49], we could further 
validate the efficacy of our model. Notably, our model 
provided a novel way of re-utilizing the traditional ChIP-
seq data. In ENCODE project, over 70 cell lines have the 
matched ChIP-seq data while only 11 cell lines provide 
ATAC-seq data. With the application of our framework, 

the chromatin accessibility of those cell lines could be 
inferred instead of performing additional ATAC-seq 
experiments.

Conclusions
In summary, we developed a computational framework 
for chromatin accessibility modeling. Several important 
HMs and TFs were found as the major regulators of chro-
matin accessibility, providing novel mechanistic insights 
in chromatin accessibility regulation. The computational 
framework and the introduced integrative model in our 
study can be generally applied to for modeling different 
genomic and epigenomic data.

Material and methods
Datasets collection and processing
To construct integrative models to predict chromatin 
accessibility, we utilized the GM12878 and HepG2 cell 
lines, for which high quality chromatin accessibility, TF 
binding and histone modification have been generated by 
the Encyclopedia of DNA elements (ENCODE) project 
[50]. The chromatin accessibility data were obtained by 
using the ATAC-seq, DNase-seq and FAIRE-seq experi-
ments and downloaded from the ENCODE database as 
bedgraph files. Specifically, for the GM12878 cell line, the 
accession IDs are ENCFF172DEA, ENCFF235KUD, and 
ENCFF001UYE for ATAC-seq, DNase-seq, and FAIRE-
seq, respectively. For the HepG2 cell line, the accession 
IDs are ENCFF356TXH, ENCFF422EDI, and ENCF-
F001UYN for ATAC-seq, DNase-seq, and FAIRE-seq, 
respectively.

The ChIP-seq profiles of histone modifications and 
TFs were also downloaded from ENCODE as bigwig 
files. The GM12878 data contain 53 files with replicates 
for 11 different histone modifications; and 361 files with 
replicates for 97 different TFs. The HepG2 data contain 
52 files with replicates for 11 different histone modifica-
tions; and 763 files with replicates for 221 different TFs. 
All files were mapped to the hg19 genome. The anno-
tation of these ChIP-seq files is summarized in Suppl. 
Table  1. All the signals in the files were defined as log 
fold change of normalized reads compared to the input 
control.

Identification of chromatin accessible and non‑accessible 
regions
The ATAC-seq bedgraph files were used to define the 
chromatin accessible (positive) and non-accessible 
(negative) regions in the genome. Peaks in the ATAC-
seq represent regions in the chromatin that are highly 
accessible to Tn5 transposase and correlate with tran-
scription activity. The positive region was defined as the 
genomic regions covered by ATAC-seq peaks listed in 
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the bedgraph files. The negative region was defined as 
the neighbor region at both sides of each ATAC-seq peak 
with the same lengths. Namely, the positive and negative 
regions had exactly the same bases length with number 
of positive-to-negative ratio of 1:2. In addition, the nega-
tive regions shared similar sequence features such as GC 
content with the corresponding positive region due to 
genomic proximity, making them ideal negative controls 
to the chromatin accessible regions. The sizes of differ-
ent regions vary dramatically and therefore we divided 
each region (both positive and negative) into small bins 
of 100 bp in size, which is around the half-size of DNA 
covered by a single nucleosome [51]. The models were 
constructed at the bin level.

Calculation of HM and TF binding signal profiles
For each bin, we calculated the average TF binding and 
HM signals based on the corresponding bigwig files, 
which provided the signals at nucleotide level, repre-
sented as the log ratios (the immunoprecipitation sam-
ple with respect to the control). The Deeptools software 
was used for calculating bin-specific HMs and TFs bind-
ing signals in both the positive and negative regions [52]. 
Specially, the multiBigwigSummary function was used 
with parameter “-bs 100” to calculate the average sig-
nal of each ChIP-seq file in a 100 bp window across the 
genome [52].

Identification of TF motifs in genomic regions
DNA sequences for positive and negative regions were 
retrieved from the hg19 reference genome sequence 
downloaded from Ensembl website [53]. The occur-
rences of TF binding motifs were determined by using 
the FIMO program from the MEME Suite [54], which 
identified motifs by matching with positional weighted 
matrices (PWMs) of TFs. A total of 687 PWMs were 
used, which were downloaded from JASPAR and 
TRANSFAC database [55, 56]. FIMO was applied using 
a default parameter with a cut-off of p-value <1e-4.

A two‑layer integrative model for chromatin accessibility 
prediction
A two-layer classification model was constructed to 
integrate sequence, TF motifs, binding of TF, and HMs 
to predict chromatin accessibility at the bin level (100-
bp bins). The inputs to this model are DNA sequence of 
each bin, the presence of 687 TF binding motifs (1 and 
0 indicate presence and absence, respectively), TF bind-
ing signals (derived from ChIP-seq data), and HM signals 
(derived from ChIP-seq data). The output of this model is 
the accessibility of bins, with 1 and 0 indicating accessible 
and non-accessible, respectively.

In the first layer, a convolutional neural network 
(CNN) model was constructed to predict the baseline 
accessibility at the bin level solely based on the DNA 
sequences (100 bp) of bins since the CNN model has 
been widely used for modeling sequence based features 
[57]. The configuration of the CNN model is shown in 
Suppl. Fig. 1. Each of our convolutional layer contained 
320, 480, and 640 hidden neurons, and the output of 
each convolutional layer was activated by the ReLU 
function before propagating to the next maxpooling 
or convolutional layers. We implemented a fully con-
nected layer with ReLU activation on top of the three 
convolutional layers, which was further propagated to 
the output sigmoid layer to compute the probability of 
a given input sequence having an open chromatin state. 
The raw DNA sequences were encoded using “One-hot” 
encoding scheme as the input to the model, where each 
base pair in the sequence is mapped to the four possible 
nucleotides, with the corresponding nucleotide set as 1 
and the other three set as 0. The output of this model is 
a score ranging between [0,1], indicating the probabil-
ity of the bin to be accessible at the baseline level (i.e., 
fully based on its 100-bp DNA sequence). The imple-
ment of CNN model was finished using the keras pack-
age in R. In the second layer, the baseline accessibility 
score was combined with TF motifs, binding of TF and 
HMs to predict the two-class bin labels (accessible vs. 
non-accessible bins). These features are integrated by 
using the Random Forest classification model. Many 
TFs and HMs have multiple ChIP-seq replicates and 
we chose the one with the largest sequencing depths 
as the predicting feature so that for each TF/HM a sin-
gle feature was used for easy model interpretation. We 
also evaluated different methods of choosing replicates. 
In specific, we applied three methods: 1) chose repre-
sentative replicate with the largest sequencing depths; 
2) used the average binding signal of all replicates as 
the representative replicate; 3) randomly chose one rep-
licate as the representative replicate. The performance 
of those methods was consistent, indicating the high 
reproducibility of those replicates (Suppl Fig.  1B). We, 
therefore, stuck with the original method by choosing 
the representative replicate with the largest sequencing 
depth. To train the model, we used the ATAC-seq data 
for GM12878 and HepG2 cell lines. The positive (acces-
sible) and negative (non-accessible) bins are defined as 
described in section “Identification of chromatin acces-
sible and non-accessible regions”. The model was evalu-
ated by 10-folds cross-validation using AUC (Area 
under ROC curve) score as the metric, which summa-
rizes the specificity and sensitivity of classification mod-
els at different thresholds. Specifically, the whole data 
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were divided into 10 subsets of equal sizes. Each time, 9 
subsets were selected and combined as the training data 
and the remaining subset was used as the test data. The 
model was trained in the training data and then applied 
to the test data to predict the probability of bins to be 
accessible. This procedure was iterated until every bin 
had been in a test data and predicted exactly once. The 
predicted values are then used to calculate the AUC to 
evaluate the model performance. The 10-folds cross-
validation training was implemented using a Random 
Forest model in R using the randomForest package.

TF and HM prediction model and model transfer
To construct the feature-specific model for quantify-
ing the contribution of DNA sequence, TF motifs, TF 
binding signals, and HM modification signals, we sepa-
rated the input data from the original two-layer model 
into different subsets based on the characteristics of the 
predictors. Then a Random Forest model with 10-folds 
cross-validation was constructed to examine the pre-
diction accuracy of each feature group. We further per-
formed model transfer analysis to examine investigate 
if TF and HM models could be shared between differ-
ent cell lines. In specific, the TF and HM models were 
directly trained in one cell line using the Random Forest 
model with 10-folds cross-validation. The trained TF and 
HM models then were applied in the other cell line for 
predicting its corresponding chromatin accessibility. For 
example, using GM12878 cell line trained TF and HM 
models for predicting chromatin accessibility in HepG2 
cell line.

TF and HM prediction model optimization and stability 
analysis
To optimize the second layer RF model, we applied a 
backward feature selection method. Initiated from the 
full model including all features, the feature with the least 
relative importance was removed iteratively. In each iter-
ation, the performance of the model (AUC) was calcu-
lated based on 10-folds cross-validation. The optimized 
model was determined by visualizing the “number of 
features” versus AUC plot. A similar procedure was used 
to determine the minimum number of features required 
to achieve fairly high prediction accuracy. Features were 
removed from the full model one by one, but each time 
the one with the largest relative importance was removed 
until a sudden decrease of cross-validation AUC was 
observed.

Model for classifying TSS‑proximal versus distal accessible 
chromatin regions
It is known that both TF binding and HM signals have 
spatial patterns. Some HMs are enhancer associated 

while others are promoter associated. Therefore, we 
constructed models to classify transcription start 
site (TSS) proximal versus distal accessible chroma-
tin regions. ChIPseeker package was used to catego-
rize the accessible regions [58] into TSS-proximal and 
TSS-distal regions. The former was defined as acces-
sible chromatin regions near the +/− 3000 bp of TSS, 
while the latter as the regions having no overlap with 
TSS proximal regions or exon regions. Using the TF 
binding and HM signals as the predictors, a Random 
Forest model with 10-folds cross-validation was con-
structed to classify the two categories of accessible 
regions.
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